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ABSTRACT

Image completion has shown significant progress due to the
improvement in generative adversarial networks(GANS).
The aim image completion problem is to fill missing or
unwanted parts in images in a visually satisfactory manner.
In this project, we develop a conditional GAN architecture
with global and local discriminators using pyramid
structure. We test our model on human face dataset and
demonstrate its high performance to naturally complete the
images of human faces.

Index Terms— image completion, generative adversarial networks.

1. INTRODUCTION

Image completion, also known as image inpainting, is a
widely researched topic in computer vision. It refers to the
tasks of filling up the target regions of an image with
alternative contests. This image editing technique can be
also used to remove unwanted objects and reconstruct
occluded regions. In recent years, due to the advances in
deep learning methods, image completion has made rapid
development. It shows that deep neural networks can
synthesize realistic looking images in many applications.

In this project, we focus on face completion task, and
proposed a pyramid structure conditional deep
convolutional GANs(cDCGANSs) based on residual network
with two discriminators: a global context discriminator and
a local context discriminator. We applied and evaluate our
approach on Large-scale CelebFaces Attributes(CelebA)
Datase. By using our model, we increase the quality of the
completed face images and achieve a high performance in
model convergence.

2. RELATED WORKS

Traditional approaches. There are a number of different
approaches to solve the problem of image completion.
Traditional methods are mostly non-learning approaches.
One of them exploits a diffusion equation which largely
involves iteratively propagating local image appearance
information to the target region based on certain
mechanisms [6][14]. Another traditional approach is patch-
based methods [7][15]. However, these approaches are
usually computationally costly and not fast enough for real-
time applications.
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Convolutional Neural Networks. In the recent decade,
many new approaches have emerged. For example, CNNs
have also been used to handle image completion tasks [5].

A key implementation of image completion using CNN
was introduced by Pathak et al. [8] where they trained a
CNN adversarially to achieve the effect of pixel-wise
reconstructing the missing image regions given or
conditioned on its surrounding pixels.

In 2016, Yu and Koltun introduced dilated convolution to
enhance the performance of semantic segmentation models
without loss of resolution or coverage [4]. In 2017, Lin et al.
introduced a new feature pyramid networks for object
detection and building high-level semantic feature maps at
all scales [3]. We will borrow the ideas of these two
structures into our own generator network to achieve a
semantically aware image completion effect.

Generative Adversarial Networks. In more recent years
GAN:Ss have attracted increasingly amount of attention from
researchers. GANs are a framework to train generative
models that are able to synthesize high quality images [9].
They can also be applied to image completion tasks as long
as the model is constrained by the provided corrupted
image. A novel architect is to add a local discriminator that
only takes the patch and its immediately surroundings as
input [1]. The local discriminator along with the global
discriminator results in images that are both locally and
globally consistent. We follow the idea of using two
discriminators in our model.

3. METHOD AND MODEL
3.1. Conditional Deep Convolutional GAN

Generative adversarial networks(GANs) consists of two
neural networks, a generator G and a discriminator D [9].
These two networks are trained in competition with each
other, while G tries to generate outputs G (z) that have
similar distribution to the input data sample x, and D
attempts to discriminate between real samples x and fake
samples G (z).

Conditional deep convolutional GAN (cDCGAN) model
is mostly based on DCGAN but introduces additional
inputs, some extra information y[5]. y could be class labels
or other data. By feeding the inputs y into both the generator
and the discriminator, the model achieves conditioning [10].
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3.2. Generator

The input of the generator is an RBG image plus a mask
indicating which pixels are missing. The mask is a binary
channel with 1 for pixels to be completed and 0 for others.
The output is also an RGB image, which has the same
resolution as the original one.

The generator network structure is based on residual
networks. Dilated convolutional layers are used in the
middle layers. A 2D dilated convolution layer can be
defined as:

y(u,v) =o|b+ ZZ x(u+ri,v+r)Hw(,j)

i=1 j=1

@)
where x(u, v) and y(u, v) are the pixel of the input and
output of the layer, o is a non-linear transfer function, w is
the matrices of the filter, and b is the bias. The parameter r
is the dilation rate. For the layers with dilated rate larger
than 1, adjacent pixel in output are computed from
completely separate pixels in a much larger area of the
input. The dilated convolutions allow the model to learn a
larger area of the image while saving on the number of
parameters [4].

We also employ a feature pyramid structure in the
generator. This structure can generate multi-scale feature

Generator

Table 1. The architecture of our generator G. Each convolution is followed

by a Leaky Regfied Linear Unit (Rely) activation.

Block Type  Kemel  Dilation(n)  Stride  Outputs
Convl conv. 3x3 1 1x1 64
. conv. 3x3 1 2x2 64
%‘;'(s)i“‘lﬂ conv.  3x3 1 2x2 64
conv. 1x1 1 2x2 64
. conv. 3x3 1 2x2 128
}'{j(s)iiugl conv. 3x3 1 2x2 128
conv. 1x1 1 2x2 128
. conv. 3x3 1 2x2 256
%T(S)L(ll(ugl conv. 3x3 1 2x2 256
conv. 1x1 1 2x2 256
dilated. 3x3 2 1x1 1024
Dilated  dilated. 3x3 4 1x1 1024
conv. dilated. 3x3 8 1x1 1024
dilated. 3x3 16 1x1 1024
A conv. 3x3 1 2x2 256
ﬁs)i“f conv.  3x3 1 2x2 256
conv. 1x1 1 2x2 256
. conv. 3x3 1 2x2 128
%‘;'(S)iugl conv.  3x3 1 2x2 128
conv. 1x1 1 2x2 128
. conv. 3x3 1 2x2 64
I:)T(S)lciugl conv. 3x3 1 2x2 64
conv. 1x1 1 2x2 64
desony. 4 x4 1 12X 172 32
Degony conv 3x3 1 1x1 32
N/A output 3x3 1 1x1 3

fusion of the two discriminators which represents the

Z

Real or Fake

Local Discriminator

Figure 1. An overview of entire architecture

maps and extract higher quality feature information. It
involves a bottom-up and a top-down pathway. The bottom-
up pathway extract features in several sales. The resolution
of the feature decreases as we compute to a higher level,
while the semantic value increases. The top-down pathway
reconstructs higher resolution features by upsampling the
semantically stronger feature layer provided by the higher
pyramid levels. By implementing the pyramid structure in
the generator, the network enhances the efficiency of
detecting accurate feature information [3].

3.3. Discriminators

The discriminator network in our model consists of
aglobal discriminator and a local discriminator. Both of
them are used to distinguish between the original images
and the completed images. The output of this network is the

probability of the image to be real. The global discriminator
takes the whole image as its input in order to learn the
global consistency. While, the local discriminator only
inputs a small area around the completed region so it can
measure the completion quality of the details [1][11].

3.4. Classifier Network

Our model uses a general multiclass classifier. By adding
this auxiliary classifier, the generator is forced to complete
the image belonging to a specific class, thus enhance the
completion quality [1].
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3.5. Loss Function

Let x denote the input image and M, denote the
completion region mask. Then G (x, M) denotes the
generator network. And similarly D (x, M,;) denotes the
combined discriminator networks.

For the generator and discriminator networks, the GAN

loss is used to determine the optimal point of the minimax
game of the GAN:

=logD(G(x, M,),M,) 2)
L4 =E[1ogD(x, My) +1og (1 = D(G(x, M,), M,))|

A3)
at which point, the generator will generate features similar
to the real ones, and the discriminators will distinguish the
real and fake features. These loss functions measure how
well each network is doing compared to the other.

For the classifier, we have a loss function for real features
as:

L7 = E[log P(Y = y|x)] 4)
and one for the fake features:
£l =E[logp (v = y|6(x,M,))] )
3.6. Training

Algorithm 1 summarize the training procedure. After
preprocessing, we train the generator and generate fake
images. Then, the discriminator and the classifier are trained
to fix the generator. Finally, update all the network
parameters.

4. EXPERIMENTS
4.1. Dataset

Different from other kind of completion, the face image
completion problem is a more challenging task, as it often
requires to generate novel objects or missing key
components. The human face dataset we use in this project
is the CelebFaces Attributes (CelebA) Dataset [12]. This
large-scale face attributes dataset consists of 202,599
number of face images of 10,177 unique identities, with 5
landmark locations and 40 binary attributes annotations per
image. The rich attributes annotations of each image
including wearing hat, eyeglasses, wavy hair, mustache,
smiling, etc.

4.2. Environment

In the experiment, the training was carried out on the
Google Cloud Platform. We used one NVIDIA Tesla P100
GPU which contains 16GB RAM. Besides we used the
TensorFlow-gpu, CUDA, and cuDNN SDK. The model takes
about 5 hours for a 5000-iteration training.

Algorithm 1 Training algorithm
1: Input: images x, labels y
2: while iterations t < T4, do
3:  Sample minibatch of images x from training data.
4:  Generate masks M, for each image x in the
minibatch.

5. ift <T, then

6: Update the generator G with loss L.

7. else

8: Generate mask M, for each image x in the

minibatch.

9: Update the discriminator D with loss L.
10: Update the classifier € with loss L] and L{ .
11: ift > T, + T, then
12: Update the generator G with the joint loss

gradient, and update discriminator D.
13: end if
14:  endif
15: end while

4.3. Result

4.3.1. Face Completion

Given the face images with masks, the model will generate
completed faces. The completion results are shown in figure
2. We can see that our model learns to generate missing
components successfully and realistically. The generated
areas are of high quality and both locally and globally
coherent.

We also study the influence of various configurations by
training the image completion model using different
structures. Figure 3 presents the results for 3 settings and the
full approach. As we can see, the simple GAN with only one
discriminator has a poor-quality output and the patches are
not consistent with the entire faces. The pyramid structure
can synthesize some components, but still lack consistency
with surrounding regions. By using dilated convolutional
layers in the generator, the output has a much higher quality
while the synthesized area is completion by some blur due to
not using the local discriminator. Only the result trained by
the full approach with two discriminators is consistent both
globally and locally and have fine details.

Als W= 0 wlleH
1 [l o el e ! ')
Eﬂlﬂlll.ﬂ@
o ) e o) 0 3 O
o e T ISR
o e ] ), )

(a) Input




Columbia University E6894 Fall 2018 Final Report

(b) Output B

o e | Sl e
B Bd%

E G EE‘ Ok

(a) (b) (c) (d)
Fig.3. Comparison of training with different configurations.
Here show the results of model trained with different
structure configurations: (a) using simple GAN with only
global discriminator, (b) using pyramid structure generator
and only global discriminator, (c¢) using pyramid structure
generator with dilated convolutional layers and only one
discriminator, (d) using pyramid structure generator with
dilated convolutional layers and both global and local
discriminators.

4.3.2. Training Loss

Figure 4 illustrates the training loss curves for 3 model
structures. We can observe that all three models result in
similar loss for generator, discriminator, and classifier. But
the for the real loss and fake loss of the classifier, the model
using pyramid structure generator with dilated convolutional

layers and the full approach model shows the lower loss. All

the three models converge fast.
G LPSS

120

log(D_loss )

5 L L L L L L
0 500 1000 1500 2000 2500 3000 3500 4000
epoch

C Loss

o 500 1000 1500 2000 2500 3000 3500 4000
epoch

C Fake Loss

—— Global and local
| —— Dilated conv
Pyramid structure

Fig.4. Loss curves over iterations of three model
configurations.

5. CONCLUSION/DISCUSSION

We proposed and realized a pyramid structure conditional
deep convolutional GANs with global and local
discriminators for human face completion based on residual
network. We demonstrate that our model can synthesize
high quality realistic face components. We also compare the
influence of different partial structure with the full model
and show superiority of our model.

In future work, we are going to adapt our image
completion model to other scenarios, such as building and
animal images. Moreover, we aim to apply and further
extend the model to tackle face recognition problems.
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APPENDIX
All codes will be publicly available at
https://github.com/zailchen/Conditional-Deep-
Convolutional-GANs-for-Image-Completion
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